skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Surana, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hypergraphs and tensors extend classic graph and matrix theories to account for multiway relationships, which are ubiquitous in engineering, biological, and social systems. While the Kronecker product is a potent tool for analyzing the coupling of systems in a graph or matrix context, its utility in studying multiway interactions, such as those represented by tensors and hypergraphs, remains elusive. In this article, we present a comprehensive exploration of algebraic, structural, and spectral properties of the tensor Kronecker product. We express Tucker and tensor train decompositions and various tensor eigenvalues in terms of the tensor Kronecker product. Additionally, we utilize the tensor Kronecker product to form Kronecker hypergraphs, which are tensor-based hypergraph products, and investigate the structure and stability of polynomial dynamics on Kronecker hypergraphs. Finally, we provide numerical examples to demonstrate the utility of the tensor Kronecker product in computing Z-eigenvalues, performing various tensor decompositions, and determining the stability of polynomial systems. 
    more » « less